Der Large Hadron Collider: Forschung und Zukunftsperspektive

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-28 09:41:12.692992 GMT Run / Event / LS: 305814 / 971086788 / 610

> Lea Caminada (PSI | UZH) 6.11.2023

Der Large Hadron Collider (LHC)

27 km langer Teilchenbeschleuniger am CERN Proton-proton Kollisionen bei höchsten Energien (E_{cm}=13 TeV) In Betrieb seit 2009

LHCb

CMS

→ LHC ermöglicht es, die Gesetze der Physik bei höchsten Energien/kleinsten Dimensionen experimentell zu überprüfen

ATLAS

ALICE

2

Standardmodell der Teilchenphysik

Beschreibt unser derzeitiges Verständnis der Grundbausteine und Wechselwirkungen. Vorhersagen wurden in den letzten Jahrzehnten sehr genau getestet.

Aber auch viele offene Fragen: Warum diese Anordnung? Gibt es mehr Grundbausteine? Wie passt die Gravitation ins Bild? Lassen sich die Kräfte vereinheitlichen? ...

Struktur der Materie

- Ziel der Teilchenphysik ist die Erforschung von fundamentalen Teilchen und Kräften
- Die Quantenmechanik beschreibt die Physik im (sub)atomaren Bereich
 - Wellen-Teilchen-Dualität
 - de Broglie Wellenlänge λ

 $\lambda = \frac{h}{p}$

- *h*: Planck Konstante *p*: Teilchenimpuls
- → Brauchen viel Energie um kleine Strukturen aufzulösen

Teilchenkollisionen

 Da die meisten Elementarteilchen instabil sind, müssen wir sie im Experiment erzeugen

Kollisionen in LHC Experimenten

Physik der Kollisionen

 Erwartete Rate von Ereignisse für einen bestimmten Prozess:

 $R = \sigma \cdot L$

Process	Cross section (nb) @ 14 TeV	Production rates (Hz) @ \mathscr{L} = 10 ³⁴ cm ⁻² s ⁻¹
inelastic	10 ⁸	10 ⁹
bĒ	5×10 ⁵	5×10 ⁶
$W \to \ell \nu$	15	150
$Z \rightarrow \ell \ell$	2	20
tī	1	10
$H \rightarrow \gamma \gamma$	10-4	10 ⁻³

 Interessante Ereignisse müssen aus einer riesigen Anzahl Kollisionen herausgefiltert werden…

Messungen des Standardmodells am LHC

Standard Model Total Production Cross Section Measurements Status: March 2021

Das Higgs Boson

- Einzigartiges Teilchen im Standardmodell
 - Kopplungsstärke zu anderen Teilchen ist abhängig von der Masse und genau vorhergesagt
 CMS
 138 fb⁻¹ (13 TeV)

- Vielzahl von Messungen der Eigenschaften des Higgs Bosons

10 Jahre nach der Entdeckung des Higgs Bosons

Direkte Suche nach neuer Physik

- Suche nach Resonanzen von • neuen schweren Teilchen
- $pp \rightarrow X \rightarrow jet+jet$ Events / Bin Events / 25 GeV 107 ATLAS CMS 10 s=13 TeV, 37.0 fb⁻¹ 10⁶ Data Background fit BumpHunter interval 10⁵ $q^{*}, m_{.} = 4.0 \text{ TeV}$ _ = 5.0 TeV 104 10^{3} 10 10² 10 10 = $q^*, \sigma \times 10$ 10 p-value = 0.63 Fit Range: 1.1 - 8.2 TeV 1 $|v^*| < 0.6$ 10-1 Significance Data - MC MC TITITI TI TUTUTI TUT JES Uncertaint 2 3 8 5 Δ 6 9 200 300 m, [TeV]
- Suche nach «fehlender Energie» (z.B. dunkle Materie)

- Suche in vielen möglichen Endzuständen über grossen Massen/Energie-Bereich
- Bis jetzt keine Hinweise auf neue Physik

Wie weiter?

- Streben nach höherer Messgenauigkeit und der Erforschung von bis jetzt unerschlossenen Bereichen
- Grössere Datenstatistik höhere Luminosität
- Verbesserte Detektoren und neue Rekonstruktions- und Analysetechniken
- Neue Beschleuniger mit höheren Energien

LHC Plan

- Vear
 LHC Run 3 wird 2022 beginnen, danach Upgrade des Beschleunigers, um höhere Luminosität zu erreichen (HL-LHC)
 > Grosse Datenstatistik (10x mehr) für Präzisionsmessungen
- Herausforderung für Detektoren und Experimente

CMS Experiment

Identifikation der Teilchen in CMS

Pixeldetektor im CMS Experiment

m

 Spurrekonstruktion mit höchster Präzision in nächster Nähe des Kollisionspunktes

22 m

Eigenschaften des CMS Pixeldetektors

- Schnelle Aufzeichnung und Auslese
 - Hohe Kollisionsrate (40 MHz) und hohe Triggerrate (100 kHz)
- Hohe Granularität
 - Rekonstruktion von mehr als 600 Spuren pro Ereignis
- Hohe Effizienz (>99%)
 - Seeding f
 ür Spurrekonstruktion
- Hohe Ortsauflösung (~10μm)
 - Rekonstruktion von Primär- und Sekundärvertices
- Hohe Strahlenhärte
 - Bis zu 100 Mrad in der innersten Lage
- Leichte Bauweise
 - Minimiert Mehrfachstreuung

Grundprinzip des Pixeldetektors

Hybrid Technologie

[C. Brönnimann, et al., Nucl. Instrum. Meth. A565 (2006) 303]

CMS Silizium Pixeldetektor

Designt und gebaut vom CMS CH Consortium (PSI, ETH, UZH)

Erster Detektor @PSI 2008 In Betrieb in CMS 2010-2016

Phase-1 Upgrade @PSI 2017 In Betrieb in CMS 2017-2024

1440 Module 66 M Pixel

1856 Module 124 M Pixel

Pixelgrösse: 100x150 µm²

Installation des Pixeldetektors am CERN

Pixeldetektor im CMS Experiment

Ein rekonstruiertes Ereignis

Einheiten in cm

Anzahl Pileup ist proportional zur Luminosität...

Pixeldetektor im Betrieb

24

Pixeldetektor im Betrieb

Materialkomposition

XX

- Detektormechanik in Leichtbauweise
 - CFK Laminat (500µm dünn)
 - CO₂ Kühlung in
 Aluminiumröhrchen mit 50µm
 Wandstärke

L2 Mechanik mit Kühlrohren wiegt weniger als 200g

Effizienz

- Effizienz gemessen als Funktion der Luminosität
- Höhere Raten in inneren Lagen bei gleicher Luminosität
- Grosse Verbesserung in allen Lagen im Phase-1 Detektor im Vergleich zum ursprünglichen Detektor

Strahlenhärte

- Nicht-ionisierende Strahlung führt zu Defekten in der Kristallstruktur des Siliziums
- «Charge trapping»: Einfangen von Ladungsträgern → Verlust von Signalladung
- Effekt grösser für grössere Tiefen → Asymmetrischer Verlust der Signalladung nach Bestrahlung
- Gemessen mit schräg einfallenden Spuren
- → Muss bei der Rekonstruktion berücksichtigt werden, um Einfluss auf Auflösung zu minimieren
- → Kann teilweise kompensiert werden (HV, thermisch), aber limitiert Lebensdauer

LHC Plan

• Weitere Upgrades des Pixeldetektors geplant

Experimentelle Herausforderungen am HL-LHC

- Ereignisse mit Pileup bis zu 200
- Hauptziele des Detektordesigns
 - Leistungsfähigkeit bei höheren Raten bis zu 3 GHz/cm² (x5 mehr)
 - Strahlungshärte bis zu 1GRad (x10 mehr)
 - Bewältigung des hohen Pileup (bis zu 1000 Spuren/Ereignis) → höhere Granularität und Ortsauflösung
 - Grössere Abdeckung \rightarrow grössere Akzeptanz und grössere Präzision

Pixeldetektor für High-Luminosity LHC

Ein Viertel des CMS Pixeldetektors für HL-LHC (Phase 2)

Zeitauflösung – eine zusätzliche Dimension

- Pileup 200 \rightarrow 2 Primärvertices pro mm
- Zeitspanne einer Kollision ist etwa 200 ps
- Idee: Aufteilung der Kollision in Zeitfenster von etwa 30 ps erlaubt die Anzahl von Primärvertices pro mm auf jetziges Niveau zu reduzieren
- → Brauchen Detektoren mit entsprechender Zeitauflösung

4D Tracking

Erster Schritt:

Zeitauflösung durch zusätzliche Detektoren mit weniger Granularität Erlaubt die Separierung von räumlich überlappenden Ereignissen

Zweiter Schritt:

Zeitauflösung in den einzelnen Lagen der Spurdetektoren Zeitinformation kann in der Spurrekonstruktion benutzt werden

→ R&D für Pixeldetektoren mit Zeitauflösung < 50 ps

Abschluss und Ausblick

- Die Experimente am LHC ermöglichen viele neue Messungen und Resultate zur Gültigkeit des Standardmodells der Teilchenphysik und (vielleicht) darüber hinaus
- LHC Run 3 ist in vollem Gange
- Vielseitige Neuerungen im Bereich der Detektorentwicklung und der Rekonstruktions- und Analysetechniken treiben die Suche nach neuer Physik voran

Phase-1 Upgrade des CMS Pixeldetektors

- Wichtigste Neuerungen und Verbesserungen:
 - Zusätzliche Lage
 - Innerste Lage näher am Kollisionspunkt
 - Signifikant weniger Material
 - Grösseres Leistungsvermögen bei hohen Raten (neue ROCs und neues Datenauslesesystem)

CMS detector upgrade for HL-LHC

 Major upgrades needed for all subdetectors to cope with harsh conditions at HL-LHC (particle rate, multiplicity, radiation, ...)

ECAL barrel

replace FE electronics

Muon system

replace FE electronics

Extended forward coverage

New tracker

- Replace all silicon tracker
- Extended forward coverage up to |η|<4

New highgranularity endcap calorimeter

New MIP precision timing detector

Trigger/DAQ

- Tracking information at L1
- Increased output rate

CMS Phase-2 Tracker detector

- Whole CMS silicon tracker will be replaced during LS3
 - > Outer tracker (OT): strip and pixel-strip modules
 - > Inner tracker (IT): pixels with $100x25\mu m^2$ pixel size

LHC data Run 1 and Run 2

• Excellent performance of accelerator and detectors provides unique data set for physics analysis

Tracking efficiency and fake rate

Impact parameter resolution

Vertex resolution

The Large Hadron Collider at CERN

LHC produces 22 million GigaBytes of data per year (equivalent to > 1 million DVDs)

ALICE

Collision event CEI data

Analyzed by the most **powerful** computing system in the world The detectors spew out analyzed data at **700 MB/sec** That is ~30,000 Encyclopedia Britanicas *every second*!

LHC 27 km

CMS

The Large Hadron Collider at CERN

Requires very large distributed computing: 6 Peta Bytes / year per experiment

 $B^+ \rightarrow K^+ \ell^+ \ell^-$ and related decays

Occur through b→ sℓ⁺ℓ⁻ transition but in contrast to B⁰_s → ℓ⁺ℓ⁻, contain a hadron in the final state.
 e.g B⁺ → K⁺ℓ⁺ℓ⁻, B⁰ → K^{*0}ℓ⁺ℓ⁻, B_s → φμ⁺μ⁻, Λ_b → Λ^{*}ℓ⁺ℓ⁻...

• Offer multitude of observables complementary to $B_s^0 \rightarrow \ell^+ \ell^-$ measurements.

Conclusions

Using the full LHCb dataset to date, presented:

- 1. Single most precise measurement of $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$, improved precision on $\tau_{\mu^+\mu^-}$ and first every limit on $B_s^0 \to \mu^+ \mu^- \gamma$
- 2. Updated R_K measurement $\rightarrow 3.1\sigma$ departure from LFU!
 - \rightarrow Reframing discussion on flavour anomalies

Complementarity between $R_{\mathcal{K}}$ and $\mathcal{B}(B_s^0 \to \mu^+ \mu^+)$ measurements crucial moving forward.

"...perhaps the end of the beginning."